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Abstract

Vibration acceleration levels on large space platforms exceed the requirements of many

space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian

Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the

Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and

has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic

actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack)

level. Payload acceleration, relat?ve position, and relative orientation (Euler-parameter)

measurements are fed to a state-space controller. The controller, in turn, determines the actuator

currents needed for effective experiment isolation. This paper presents the development of an

algebraic, state-space model of the MINI, in a form suitable for optimal controller design.
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Introduction

Acceleration measurements on the U.S. Space Shuttle and the Russian Mir Space Station

show acceleration environments that are noisier than expected [ 1]. The acceleration environment

on the International Space Station (ISS) likewise will not be as clean as originally anticipated; the

ISS is unlikely to meet its microgravity requirements without the use of isolation systems [ 1], [2].

While the quasi-static acceleration levels due to such factors as atmospheric drag, gravity gradient,

and spacecraft rotations are on the order of several micro-g, the vibration levels above 0.01 Hz are

likely to exceed 300 micro-g rms, with peaks typically reaching milli-g levels [3]. These

acceleration levels are sufficient to cause significant disturbances to many experiments that have

fluid or vapor phases, including a large class of materials science experiments [4].

The Microgravity Vibration Isolation Mount (MIM) is designed to isolate experiments from

the high frequency (>0.01 Hz) vibrations on the Space Shuttle, Mir, and ISS, while passing the

quasi-static (<0.01 Hz) accelerations to the experiment [5]. It can provide up to 60 dB of

acceleration attenuation to experiments of practically unlimited mass [6]. The acceleration-

attenuation capability of the MIM is limited primarily by two factors: (1) the character of the

umbilical required between the MIM base (stator) and the MIM experiment platform (flotor), and

(2) the allowed stator-to-flotor rattlespace. A primary goal in MIM design was to isolate at the

individual experiment, rather than entire rack, level; ideally the MIM isolates only the sensitive

elements of an experiment. This typically results in a stator-to-flotor umbilical that can be greatly

reduced in size and in the services it must provide. In the current implementation, the umbilical

provides experiments with power, and data-acquisition and control services. Even with the

approximately 70-wire umbilical the MIM has demonstrated good isolation performance [6].

The first MIM unit was launched in the Priroda laboratory module which docked with Mir

in April 1996. The system has been operational on Mir since May 1996 and has supported several

materials science experiments [ 1]. An upgraded system (MIM-II) will be flown on the U.S. Space

Shuttle on mission STS-85 in July 1997 [6].



In order to develop controllers for the MIM it is necessary to have an appropriate dynamic

model of the system. The present paper presents an algebraic, state-space model of the MIM, in a

form appropriate for optimal controller design.

Problem Statement

The dynamic modeling and microgravity vibration isolation of a tethered, one-dimensional

experiment platform was studied extensively by Hampton [7]. It was found that optimal control

techni_lues could be effectively employed using a state-space system model, with relative-position,

relative-velocity, and acceleration states. The experiment platform was assumed to be subject to

Lorentz (voice-coil) electromagnetic actuation, and to indirect (umbilical-induced) and direct

translational disturbances.

The task of the research presented below was to develop a corresponding state-space model

of the MIM. Translational and rotational relative-position, relative-velocity, and acceleration states

were to be included, with the rotational states employing Euler parameters and their derivatives.

The MIM dynamic model must incorporate indirect and direct translational and rotational

disturbances.

System Model

A schematic of the MIM is depicted in Figure 1. The stator, defined in reference

frame (_), is rigidly mounted to the orbiter. The flotor, frame (_), is magnetically levitated above

the stator by eight Lorentz actuators (two shown), each consisting of a fiat racetrack-shaped

electrical coil positioned between a set ofNd-Fe-Bo supermagnets. The coils and the supermagnets

are fixed to the stator and flotor, respectively. Control currents passing through the coils interact

with their respective supermagnet flux fields to produce control forces used for flotor isolation and

disturbance attenuation [5].

The flotor has mass center F and a dextral coordinate system with unit vectors _v_t' -v_2'and

L, F0. (actually, stator-plus-orbiter) has mass center aand origin The stator S • and dextral

coordinate system with unit vectors -g-t,--g2,and g_.3,and origin S0. The inertial reference frame O is



similarlydefined by _ht, h_, and ha, and origin N o.

to the flotor at F,.
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The umbilical is attached to the stator at S,, and

/_ [ E, F*

su sta_

Figure 1. Schcmaticofthe MIM

State Equations of Motion

Translational Equations of Motion

Let E be some flotor-fixed point of interest for which the acceleration is to be determined.

IfE has inertial position r_u0E, then its inertial velocity and acceleration are r_'No_ - _ rmF and

_oE - _ _ _0_ ' respectively. (The presuperscript indicates the reference frame of the

differentiations. The subscripts indicate the vector origin and terminus.) The angular velocity and

angular acceleration of the flotor with respect to the inertial frame are represented by Uo)P and

_d u_).ugr, respectively, where _aF ____.__(

Let _Fbe the resultant of all external forces acting on the flotor; M P/F" (or simply M), the

moment resultant of these forces about F'; m, the flotor mass; and /F/F'(or /), the central inertia



dyadicof theflotor for _1' _2' andL"

expressed in the following two forms:

and

Then Newton's Second Law for the flotor can be

F = m?:No F.

-- * -- •

(Eq. 1)

(Eq. 2)

From Equation (2),

_p =/-* .[___M__F x (/. %f)]. (Eq. 3)

It will be useful to find an expression for ?-'tCoSin terms of the acceleration ?-'NoS.of the umbilical

attachment point S,, and in terms of the extension of the umbilical from its relaxed position.

Begin with the following: rs_. = r_0e + reF. _ r_NoS0-- rsos. (Eq. 4)

Differentiation of Equation (4) yields

• • +N F • N(OS x
r_s.v" = r_.Nos co x rsF " -- rNoso- _ rsos. •

(Eq. 5)

A second differentiation gives

__S.&=i:NoE+_ p + NC0FX( N0_P× r_)- ?_'N0s0-Nas× NcoSx×rz_ _ _ _ r_sos-NcoSx( rsos,). (Eq. 6)

Substitution for nap from Equation (3) into Equation (6) yields

.... {[-(r_. : rN_ + _-1.M_ Nrop× k Nro_ ×,._. - r,,o_0- × r_.
(Eq. 7)

In these equations

(Eq. 8)

Under the assumptions that N_s and Na__sare negligibly small and, therefore, that

i:NoS°_ r-NoS., (Eq. 9)



Equation(7) reducesto

,_s,. [M- /_ _ r__.s (Eq. 10)

Linearization about S_F= 0 yields the following result:

/:s_. = £1v,,z+ {/-I. __M}× r_,, - b_'Nos. (Eq. 11)

Appropriate expressions for _F and M will now be determined, for substitution into Equations (1)

and (11), respectively. Those amplified equations will then be used to obtain a more useful

expression for k_'s,F. [See Equations (43-48).]

i

The force resultant _F is the vector sum of the eight actuator (coil) forces F(i = 1,...,8),

with resultant _; of the umbilical force F_,,t,caused by umbilical extensions from the relaxed

position; of the direct disturbance forces, with resultant F__d;and of the gravitational force F_g.

Gravity may be neglected for a space vehicle in free-fall orbit. The moment resultant M is the

vector sum of the moments due to the coil forces, with resultant _M_Mc ; of the moment M, due to

the umbilical force F t ; of the moment M due to the umbilical rotations from the relaxed

orientation; and of the moment __M_.Mddue to the direct disturbance forces. There is no moment due

to gravity, since M is about the flotor center of mass F °. In equation form, assuming the i 'h coil

force to be applied at point B,

and

$

F: )--_F_c + F, +__Fd (Eq. 12)
i=1

___u: ×E'c _ _+rFw " xF_,,t + M,, + M d (Eq. 13)
i=1

6



More explicitexpressionsfor F _,and ___,,will now be developed. If the actuator has coil

current 1__, length L_, and magnetic flux density B_, then the associated actuator force

becomes

F_c = I,L,B_I_, x J_,. (Eq. 14)

Assume a translational stiffness K[ for an umbilical elongation in the _ direction, and a

corresponding translational damping C_. If a post-superscript u is used to refer to the umbilical in

its relaxed (unextended, untwisted) position, then the force the umbilical exerts on the flotor

becomes

3 3 I-Nd )}
__ + i __= - _ rs_ " •g, g,

[. i=l

Define the following, for i = 1, 2, 3"

( ")xo, = rs.F. -- rsz •_, (Eq. 16)

and xb, = _?,,. (Eq. 17)

If _@s = 0, Equation (15) becomes

Eut i i:- K,x,., +C;xb,)__ , . (Eq. 18)

The relative positions x_ and the relative velocities x_, will be six of the nine translational states used

in the state-space formulation of the system equations of motion.

As with _.F_cand ___,,above, M_r can be also be expressed in more explicit form, in analogous

fashion. Assume a rotational stiffness K_ and a rotational damping C_, for umbilical twist about the

direction. Let do_/s_ represent the rotation of the flotor, relative to the stator, from the relative



positioninwhichthe .1"and_. coordinatesystemsarealigned.

angleof twist aboutthataxis.

expressedbythefollowing:
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mh_+is the rotation axis, and 00is the

Using the post-superscript u as before, the moment M can be

or

(Eq. 19)

(Eq. 20)

Equation (20) can be expressed in alternate form using Euler parameters. Let F/S_be

+e,_*,.

described in (_) by

Define the following Euler parameters [8].

F/S[3 0 = COS_,

4)
(s)F/sf31 = e I sin_,

(S)F/S[J 2 = e 2 sin 2,

(s)F/s_3 = e3 sin-_,

_'/s13=sin _ Fish •and

For small values of 00, the Euler parameters can be simplified:

F/sl3 ~ 10 _ '

(s)_/s_t = e, 00/2,

(Eq. 21)

(Eq. 22)

(Eq. 23)

(Eq. 24)

(Eq. 25)

(Eq. 26)

(Eq. 27)

(Eq. 28)



(Eq. 29)

(Eq. 30)

and v/_= _ F/sh . (Eq. 31)

dOr/S_h_= 2 F/_. (Eq. 32)

Note that, for small angles,

This equation can be used to simplify the stiffness terms of Equation (20).

For the damping term, Equation (31) can be differentiated to yield

,%= + ^ ,}-cos- _/sh_, + sin- F/Sa-- 2 2 2 n_,,

2P/s_ = _ r/S_ + dpp/s __ __"

(Eq. 33)

or, for small angles, (Eq. 34)

Equation (20) now becomes

M. =_2 ZK, FI__FI_, ). g_, g_,+Z..,t_.rt __._,)g, . (Eq. 35)
i=l i=1

Define the following, for i = 1, 2, 3"

Xdi=(v/s_--v/s_")'__, (Eq. 36)

and x,i = Jbai. (Eq. 37)

The assumption that Nw__.sis negligible yields, finally,

+ i ^ .M__M_,,=-2 K',x._ C,x,_]s, (Eq. 38)
,=

Note that Equation (11) describes f-s.y, in terms of the acceleration of an arbitrary flotor-

fixed point E. For E located at flotor mass center F; Equation (11) can be used straightforwardly

with Equation (1) to yield



m

Define now three unknown-acceleration terms, to be used with Equation (39).
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(Eq. 39)

The first term

represents the indirect translational acceleration disturbance input to the flotor, applied at the stator

end of the umbilical:

°°

a,, = rms" . (Eq. 40)

The second term represents the direct translational acceleration disturbance to the flotor, due to

unknown disturbance force F d •

1
_ad: -- Fd. (Eq. 41)

m

And the third represents the direct angular acceleration disturbance input to the flotor, due to _Fd •

_d = /-'' Md, (Eq. 42)

Substitution from Equations (12), (13), (14), (18), (38), (40), (41), and (42) into (39) yields the

following result:

1 F _ = __ __ x xi=s._." : m(_ c + Fut)+ I -I .(Me + M t + Mr ) FF.Fu .-]- _-.._d _F"F u --ain +ad, (Eq. 43)

8 $

where F c = _-_.F'¢ : E I,L,B,I_, x _B,, (Eq. 44)
i=l /=1

Eut = -- i i ^K;x,_ +C;xb,)s_, , (Eq. 45)

8 8

m =Zm =Zr,.,,× ×
1=1 i=1

i ^
Mu, = --rr.F. X K_x,_ +Cxb, s_, ,

-=

(Eq. 46)

(Eq. 47)



J)and M., =-2 K_x,_+ _C,x s̀t^ .

Substitution from Equation (43) into Equation (11) produces the following equation for the

acceleration of arbitrary flotor point E:

1 F B _e,:--:(_o+:.,)+L-'.(_M.+M.,+_M)×,_+ __,×r,, +__,.

Assuming NtoS to be negligible, one also has the following:

• (r,.,.).
rs.r.- -_

Sd2
r-s?.- _t_ (rs?.) •

(Eq. 48)

(Eq. 49)

(Eq. 50)
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and (Eq. 51)

(Note that assuming _'o__s to be negligible does not imply that (E) and 1_ are identical; it means

rather that 1_) can be treated as if it is in pure translation relative to O for the frequencies of

interest.) Equations (43), (49), (50), and (51) provide the basis for a state-space form of the

translational equations of motion, using xo,, x_,, and low-pass-filtered approximations to the s',

components of _UoE[see Equations (96) and (103)], as states.

Rotational Equations of Motion

Let _'/S_=sin _ r/Sh as before [Eq. (26)]. Differentiating the left side twice produces

"a _/s _/s +"a,_ _/_13
d/ _ -- X --

(Eq. 52)

and
Nd Sd 2

x F/Sf3 NcoZXF/S_ .dt---i +k ___] (Eq. 53)

Assuming as before that N@S _ O, Equations (52) and (53) become, respectively,



s
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(Eq. 54)

and _ (Eq. 55)

Similarly, p/s__ Fis_, Sd F� _/ _--,,,( (Eq. 56)

and piss_F/sit, Sd2_ _ -
Returning to Equation (26), two differentiations of the right side yield

Ud2(rlS__)=_ do_/s^ _ (_)2sin _doFIS_ sin_2r/s_dt 2 cos_- n# _r/sh#+ cos_- _n#+ n_.

(Eq. 57)

(Eq. 58)

Linearizing about dO= 0 and _b= 0, and assuming F/Sh# to vary negligibly with time, Equation (58)

becomes 2 r/S_ = _ F/Sh__#. (Eq. 59)

Similarly, Equation (33) reduces to 2 r/s__ = _ FiSh# . (Eq. 60)

Equations (56), (57), (59), and (60) provide the basis for a state-space form of the rotational

equations of motion, using as states the s_',components of F/S_3--F/Sf3u and of F/s_ _F/S_, (i.e.,

x,_ and x,,, respectively, for i = 1, 2, 3).

Equations of Motion in State-Space Form

From Equation (16),

mrl, i ^ ^ ^
r--S.F, -S,Y, = XolS_ + x'a2s2 + xo3s3.

Using Equations (16), (17), and (50),

rSuF u -- --SuF u : X'bl "_ Xb2_ 2 "1- Xb3_3 •

(Eq. 61)

(Eq. 62)



Similarly,employingEquations(16), (17), and(51),

• ^ . ^

G:.- £]:. = xb,_s,+ xb2s2+e_3s_'3.

13

(Eq. 63)

Introduce the use ofa presuperscript in parentheses to indicate the coordinate system used for

componentiation. (This notation allows vectors to be expressed unambiguously in terms of their

measure numbers.) Then Equations (61) and (62) take the respective forms,

Xal }
(S)r -(S)r_ ]Xo_ = Xo-S,F, -s_ =

I

LXa3

f' ,lf',l
and = = =:b r=_rb,

[.xo3J LXb3J

where _x and _xb are defined as indicated. (Cf. Equations (16) and (17).) _xa and _x have

corresponding definitions. (C£ Equations (36) and (37).)

Equations (43) and (63) can be used together to develop a state-space equation for x'b-

First, express Equation (63) in measure-number form:

f' ,l
[Xb3J

Next, define rotation matrix SmQ by

s-2 = S/FQ Y2 '

_3 3

where the prefix indicates the rotation of frame (_ relative to frame (_) .

arbitrary vectors

(Eq. 64)

(Eq. 65)

(Eq. 66)

(Eq. 67)

Finally, observe that, for



and

the cross product can be expressed in determinant form by

(Eq. 68)

(Eq. 69)

{L L Z,Ir lxr 2=1xl Yl z I , (Eq. 70)

fx= y= z21

or in matrix form (i.e., using measure numbers) [8], by
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io,0 l]{x2}'_')(rlxr=): z, -x I Y2 .

- y_ x I 0 z 2

(Eq. 71)

Represent the above skew-symmetric matrix by (V)r_. Using this notation, Equation (43) can be

expressed as follows:

(_ CF) C_ s/F_b=IIcs)F +C_F I s/rOC_r" I-'1 'M,+ 'M_,+ 'M_,]- Q (mr" I-_(_3M c_a +(S_a
m t --c --_1- _ -rF, t -r_, --d-- -,. --d, (Eq. 72)

where I is the inertia matrix corresponding to / .

Linearizing Equation (3) about %__F= 0 yields

NaF= I -_ . M. (Eq. 73)

)_ at= _"% =g"% + 2_ F/s- .F/_:_: _ _n, + q> _n,. (Eq. 74)

If F/S_h,is assumed to vary negligibly with time and Equation (74) is linearized about qb= 0, the

result is

_a_qf= "_Flsii,. (Eq. 75)

From Equations (59), (73), and (75),



or, equivalently, 2 F/ _ F/_ =/-1. M.

Application of Equation (55) leads directly to

Sd2 F/S[3__ 1 i_ 1

In measure-number form,

15

(Eq. 76)

(Eq. 77)

(Eq. 78)

i=1

where Fic, Fc, u,, and u are defined as indicated.

Next, using Equation (64) with (45), the translational force the umbilical exerts on the flotor

can be expressed by

(S)F_, =-Ktro -C,x_ b = F_t x_o + F_x_b , (Eq. 83)

(Eq. 82)

1 S/FQ I-' (F)M,
__, = _ _ (Eq. 79)

1 S/FQ_Fhd " (Eq. 80)or, equivalently, _,_ = 12 S/FQ I-'[ (F)Mut__+ (F)Mur__+ (P)M_] +

Six state equations of the system are given by Equations (17) and (37), iterating on i; six

more, by Equations (72) and (80). The latter six are written in terms of the various forces and

moments acting on the system, which loads have been defined in vector form by Equations (44)

through (48). These loads can be rewritten in measure-number form and substituted into Equations

(72) and (80), as follows. Beginning with Equation (44), the i rh control force can be expressed as

[ (s>^_ cP,_] ,(S)F' c = L, I_, S/FQ B, __, I, = F_u,, (Eq. 81)

The resultant control force becomes

8



where i1 1K, 0 0

K,=0 K_ 0,

0 0 K]

0 0

c,= c o,
o c:

and F_t. and F_ are defined as indicated.

16

(Eq. 84)

(Eq. 85)

The i th control force F_cexerts on the flotor a moment M_c, defined by Equation (46).

Using the notation introduced with Equation (71), this moment can be expressed by

'r)M' c [L, B, 'F)r_)as/rQr(S'"x S/rQ (P'B,]I, = M:u,,1 i __ •

The resultant moment becomes

8

(Eq. 86)

(Eq. 87)
i=1

where _ and Mc are defined as indicated.

The umbilical force F,, exerts on the flotor a moment M_,, given by Equation (47).

Substituting from Equation (83), this moment can be expressed by

'r)M__,, ----'F)rX_F.F.S/rOr[F,t,x-, + F,_x-b]', (Eq. 8S)

or, alternatively, (_)M,, = M.,,x_, + M.tbX_.b, (Eq. 89)

for M.,o and M,_ appropriately defined.

Finally, Equation (48) expresses the moment M,r that the umbilical applies to the flotor due

to umbilical rotational stiffness. The following equations express M_r in measure-number form:

(_)M_, = -2 S/eQr Krx a- 2 S/vQr c x_, = M_,aX_a + Mure x_, , (Eq. 90)



where Ei oo]Kr= K_ 0 ,

o K,_

[!00]c,= c} o,

o c}

and M,, a and M,,, are appropriately defined.

Substituting from Equations (81) through (92), Equations (72) and (80) become,

respectively,

= (F x -1 (F_r_yi-1M_ xb

+(-S/FQ (F)r)rI-'M_)Xd +(-S/YQ ___ (V)r_,l-lM. )_x. + (1F.-S/VQ 'F_fI-'M.)u

-Y'F.

and

ic =_l S/l_QI_,[M.t_x__ + M.mx_ b + M_ax_ a + M.r.X.]

S/pQr cw)aa

I

+ S/'QI-'Mcu+-_ _ •

For completeness, Equation (37) can be rewritten as -xa = _x.

To include (s)izu: as states, define _xc by

W h($)_NoE = X---c "{-OJh X---¢ '

for some high value of circular frequency coh . Taking the Laplace Transform,

} S+COh

17

(Eq. 91)

(Eq. 92)

(Eq. 93)

(Eq. 94)

(Eq. 95)

(Eq. 96)

(Eq. 97)

so that x_(s)/:N0 E for co <<cob- (Eq. 98)



Now usingEquations(82), (83),87), (89), (90), and(96)with (49),

.... re _j-b -whx-_

s/#"O (F)r_.ZI-I M_)x_a

+to,cs)a_"_to,S/rQU,)r_" UOa__a"

18

(Eq. 99)

A state-space representation of the system is given by Equations (65), (93), (94), (95), and

(99), for state vector

x__o

X' b

Xc

.Ifd

(Eq. 100)

For the small rotation angles associated with the MIM, SlFo is approximately equal to the 3 x 3

identity matrix, in which case the state equations have constant coefficients. Specifically,

-i'a = _Xb, (Eq. 101)

2_b (1F__ (F)r" I-'M "_ +(mF_-(F)r_ "-"" "_

'(F'r_ I-'M ' (_r" I-.'' '_ +(1F-W)r)_l-iM_)u-t _r_ _)X-d-( -_r, _.,,.,,)X_,. _ _

--in --d -l_F M --

(Eq. 102)

icc=COh(1F _(ar,< i_,. . "_ :1 (ar__EI_,M_)x_b_O)hX"_ __ sv_yx_. +co h _mF"_- _

-<o_(<"r;._,-'M.,),<___ -o.,_('%:'M=.)r_.+%;Z-:1<-"t,-d-_)"_'
+coh(S)ad -coh@'J,."(_,,,

_ a._1_ g t.'l. d.

(Eq. 103)

.i"d = x, (Eq. 104)



+II-'M u_+I'Fkd.

19

(Eq. 105)

Concluding Remarks

This paper has presented the derivation of algebraic, state-space equations for the Canadian

Space Agency's Microgravity Vibration Isolation Mount. The states employed include payload

relative translational position and velocity, payload relative rotation and rotation rate, and payload

translational acceleration; the relative translational position and velocity states are taken across the

umbilical. An umbilical elongation causes a restoring force due to umbilical stiffness, and an

umbilical elongation rate causes a restoring force due to umbilical damping. Consequently, relative

position feedback corresponds directly to a change in effective umbilical translational stiffness; and

relative velocity feedback corresponds, similarly, to a change in effective umbilical translational

damping. Likewise, relative rotation and rotation-rate feedback correspond to changes,

respectively, in effective umbilical rotational stiffness and damping. Feedback of payload

translational acceleration causes a change in effective payload mass. Thus, a cost functional which

penalizes the chosen states produces an intuitive effect on system effective stiffness, damping, and

inertia values.

The acceleration states can be selected to pertain to any arbitrary point on the flotor. This

allows an optimal controller to be developed which penalizes directly the accelerations of any

significant point of interest, such as the location of a crystal in a crystal-growth experiment.

The equations have been put into state-form so that the powerful controller-design methods

of optimal control theory (e.g., H 2 synthesis, H,o synthesis, mu synthesis, mixed-mu synthesis, and

mu analysis) can be used. The controller design approach detailed in references [9], [10], and [11]
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has been successfully adapted for MIM controller design; the results will be presented in subsequent

papers.
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